(Following Paper ID and Roll No.	
PAPER ID: 110603 Roll No.	

B.Tech.

(SEM. VI) THEORY EXAMINATION 2013-14 COMPILER DESIGN

Time: 3 Hours

Total Marks: 100

- Note:-(1) Attempt all questions. Each question carries equal marks.
 - (2) Be precise and to the point while answering.
- 1. Attempt any four parts:

 $(5 \times 4 = 20)$

- (a) Describe the synthesis-analysis model of compiler.
- (b) What are different compiler tools? Discuss any two.
- (c) Remove left recursion from the grammar

$$E \rightarrow E(T) \mid T$$

$$T \rightarrow T(F) \mid F$$

 $F \rightarrow id$

(d) What do you mean by ambiguous grammar? Show that the following grammar is ambiguous.

$$S \rightarrow a S b S | b S a S | \in$$

- (e) Define boot-strapping with the help of an example.
- (f) Explain the term token, lexeme and Pattern.
- 2. Attempt any two parts:

 $(10 \times 2 = 20)$

(a) What do you mean by operator precedence grammar?

Compute the operator precedence table for the given grammar.

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid id$$

(b) Differentiate between Recursive Decent Parsing and Predictive Parsing. Derive the LL (1) parsing table for the following grammar

bexpr → bexpr or bterm | bterm

bterm → bterm and bfactor | bfactor

bfactor → not bfactor | (bexpr) | true | false

(c) Show that the following grammar

$$S \rightarrow Aa \mid bAc \mid Bc \mid bBa$$

 $A \rightarrow d$

 $B \rightarrow d$

is LR(1) but not LALR(1).

3. Attempt any two parts:

 $(10 \times 2 = 20)$

- (a) Define Syntax Directed Translation. Construct an annonated parse tree for the expression (4 * 7 + 1) * 2, using the simple desk calculator grammar.
- (b) What are different ways to write three address code?
 Write the three address code for the following code segment:

While
$$A < C$$
 and $B < D$ do

if
$$A = 1$$
 then $C = C + 1$

else while $A \le D$ do A = A + 2.

(c) Define backpatching and semantic rules for boolean expression. Derive the three address code for the following expression

$$P < Q$$
 and $R < S$ and $T < U$

4. Attempt any two parts:

 $(10 \times 2 = 20)$

- (a) What is the role of symbol table? Discuss different data structures used for symbol table.
- (b) What are lexical phase errors, syntactic phase errors and semantic phase errors? Explain with suitable example.
- (c) Why run-time storage management is required? How simple stack implementation is implemented?

5. Attempt any two parts:

 $(10 \times 2 = 20)$

- (a) What is DAG? How DAG is created from three address code? Write algorithm for it and explain it with a relevant example.
- (b) What are different issues in code optimization? Explain it with proper example.
- (c) Write short notes (any two):
 - (i) Global Data Flow Analysis
 - (ii) Loop unrolling
 - (iii) Loop Jamming.